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ABSTRACT

A control system based on sliding mode control and the linear quadratic

regulator is designed to stabilize the straight line motions of towed vessels. The

control technique is through athwartship movement of the towline attachment

point on the towed vessel. Control design is based on the linearized sway and

yaw equations of motion. Numerical simulations for both the linearized and the

nonlinear system are performed and demonstrate the added robustness of the

control technique employed.
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I. INTRODUCTION

The horizontal plane stability of towed vessels is a very important field. If

the motion of a vessel under tow is unstable, a very dangerous situation exists;

the motion of a several thousand ton vessel could endanger the ship towing it

[Refs. 1, 2, 31. A method needs to be developed not only to ensure the stability of

the towed vessel's motion, but to control it [Refs. 4, 5]. If the motion of the towed

vessel can be controlled, the next step is to optimize its control, both for safety

and fuel considerations. Usually the only means of control of a vessel under tow

is through the towline. Under these conditions, stability of the vessel is marginal;

in some cases, the vessel is actually unstable.

This thesis will develop the equations of motion for a vessel in tow. It will

also state and describe the unique forces associated with a vessel being towed.

Finally, it will describe how state-space theory is being applied to control the

towed vessel's motion through the movement of the attachment point of the

towline along the beam.

A control system based on sliding mode control and the linear quadratic

regulator for the linearized equations of motion will be presented, with results in

non-dimensional form. The same control system for the non-linearized equations

of motion will also be presented, along with the results. Comparison of results for

the linearized and non-linearized equations of motion will help determine the
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robustness of the system. Matrix,, will be used to calculate the required gains for

the system, and the simulation will be done using a Fortran program.
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II. EQUATIONS OF MOTION

The two equations of motion will be developed using a body-fixed frame of

reference. The origin of this reference frame is at the center of gravity of the

towed vessel. In general, the vessel has six degrees of freedom:

1. surge along the x.-axis

2. roll about the xg-axis

3. sway along the yg-axis

4. pitching about the yg-axis

5. heave along the z.-axis

6. yaw about the zg-axis

This thesis will only deal with motion in the horizontal plane. Also, a constant

surge velocity along the xg-axis will be assumed. Other assumptions include:

1. no towed vessel/towing vessel interaction

2. massless, inextensible towline

3. no wind, wave, or current disturbances

4. the body is 3ymmetric
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Since motion is confined to the horizontal plane, the applicable equations are the

1 and yAw equations. These equations are standard Principles of Naval

Architecture, or PNA, equations. They are as follows:

Sway:

m [7)+ ur +wp +xg(pq f) _yg(p 2 + r2 ) +z (qr -P)]

= ( W - B ) cosO cos + Yf

Yaw:

I Z"+ (ly -1) -I (p2 - q 2 ) - (pr4 ) +

m[x () + ur +w) -y (u -vr +wq)] (1b)

= (x w - xB ) cosO cosO + (Y W - yoB ) sinO +Nf

If we make the above assumptions in terms of the variables in the equations:

1. No vertical motion; w=O

2. W=B

3. Small angle motion (linearized simulation only)

4. No pitch rate; also negligible roll; 0=0, 0=0, =0

5. Forward speed equals nominal speed; u=U

6. Center of Buoyancy=Center of gravity; x., yg=xA, yp

4



Then the sway and yaw equations become:

m (v + ur + x t) = Y f (2a)

If mx (7) + ur) = N (2b)

The hydrostatic forces on the right hand side of the equations are then expanded

in . standard Taylor series:

Y =Yv+Yr+Y.v+Yf+Y (3a)

N r = N v + Nr + NPv + Njf + N toNm (3b)

where Y- ' I etc.

Note that the rudder terms, N. and Y8 have been omitted, as the towed vessel's

rudder is amidships; there is no applied force due to the rudder. The only applied

force is due to the towline. Substituting (3a) into (2a) and (3b) into (2b) and

rearranging the terms yields:

Sway:

(m - Y. ) t' + ( -Y ) = Yv +(Y -mu )r + Y, 1 ,, (4a)

Yaw:

( I -N, )- N=Nov+N rN (4b)
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which can then be rearranged into working form as

Y v + ( Yv -m )75 + ( Y, - mu) + Y i = Ytouwin (5a)

N v+ Nff' + N + ( N*, -Iz) = N,.., (5b)

where r=WV, t=V. All that remains is to describe the towline forces in greater

detail.

A. TOWLINE FORCE

In Figure 1, P is the attachment point of the tow. xP and yp denote the

distance from the towed vessel's center of gravity, again using the standard PNA

body-fixed coordinate system. From the diagram, we can see that the horizontal

force associated with the towline in the sway direction is:

T sin (y +W)

The moment causing the vessel to yaw is:

-Txp (sin (y + - Typ cos (y + xV)

Assuming y and xV are small angles:

sin (y + = + = + W +x_ _ + +
L

L L L

6



Path a

T, L

/

Figure 1. Towed Vessel Coordinate Descriptiorn.

Also,

=v + u siflWj =v + UN!

vy -uN!;Z -U*4
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Finally, substituting for v, in equations (5a) and (5b) and rearranging terms:

Sway:

y. TV g+Y T y + Y, q -( Yu - Y*,)*

(6a)
-[Yu+r 1 +L  1= T

Yaw:

TT

NdV + N y - TxI. (N, - I) -( Nu - N,,

N [Nu + Txp 1 + ] (6b
V P L

T

T xp yp + TyP

These two equations are motion describe the towed vessel's motion. Note that the

coordinate y describes the lateral distance from the towing path; yp describes the

distance of the towline attachment point from the centerline of the towing vessel.

It is for yp that the control law is being developed.

8



B. ARRANGEMENT INTO STATE-SPACE

Let xl=y, x2=,, x, =y, x. =j, then, substituting into equations (6a) and 6b)

(Y -m) 3 +Y x

(7a)

LLT+[Yu 1+..-y

N x3 + (N, - I) x4

xx +[N u + TxP 1 + (7b)

x2 - Nx 3 + (Nu - NV )X 4 + T xPY + Typ

From the definition of the state variables, it can be seen that

;tI = x3  (8a)

and

-t2 = x4  (8b)

These comprise the first two of four state equations. The second two state

equations must come from equations (7a) and (7b) above. Note that these

equations are coupled in x3 and x4. Algebraic elimination yields the final two

equations of motion. Multiplying equation (7a) by ( N, - 1 ) and equation (7b)

by ( -Yv ) yields an equation for g.

9



T+ [(NY - -) - N y I .L 1Z

-Y [ N vu +Tx p 1 + . )}x 2  
(80

+ [NY*,- Y(N -I) x3

[( Yu - Yv M - I )- M (Nu - N, I x4

T y - 1+-.£ Y

Similarly, multiplying equation (7a) by (-N,) and equation (7b) by ( Y - m)

and adding yields an equation for .

10



[ ( N, - 1) ( Y - m) - Ny ,] x4

= T[x (Y _)- x
L [X (.m)-NIx 1

+(Y-m) Nu +Tx 1+E

X (8d)
LL

+ [NY -N v  - m )x 3

+ [ -N mu +N, m -N* Y +N vy ) x4

+T (Y.-m) 1+ -T y+

Equations (8a), (8b), (8c) and (8d) can also be expressed in state-space matrix form

x1  0 0 1 0 X, 0

2 0 0 0 1 x2 +0 (9)

3 a31 a32 a33 a34 3 b3 Yr

4 a41 a4 a43 a. x44 b4

Where,

mD- N %P - X1,) ( Yv - rm) - N g y,

D T [(N-I,) -xpY,]
I

A32=D-*{ Yvu +T 1 + xp (Nv-I') -Yv Nu+ Tx, 1 + p
-- --L



a34= Iv (Y-Y ) (N - 1 -Yv( N~u- Nv

-T

a43 ~~ N.,-N ~m

a4 4 D-: [NYv -NY, + ( Nv -Nvu) m]

b4 = D-T[ Y - m)( +1X -N

12



III. CONTROL SYSTEM DESIGN

A. SYSTEM AUGMENTATION

Equation (9) defines the state-space form of the equations of motion. One

more state must be defined and added to this equation; that of the ordered, or

commanded, yp. This variable shall be called yr. The usual response of yp with

respect to time should look like a first order system, as in Figure 2:

oPC -time

-.5 yp

Figure 2. yp Response with Respect to Time.
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The equation governing this response is as follows:

T PY P + Yp = YC

or yp=Typ"C
-1 P

where TP is the non-dimensional time constant for the towline attachment point

motion control system. If yp is now considered the input to the system, and yp

is considered a state variable, the matrix equation becomes:

yp -_0I 00 0 yP 1
TP T

000 1 X P

0 0001 00(10)X2 =0 0 0 0 1 X2 +0 YPC
b3 a3 1 a32 a33 a 34 0

x4 b4 a41 a42 a4 a 4. 0

where a31, a32, a33, a34, a41, a42, .a43, a4, b 3 and b4 are as previously defined. In a

sense, the actual distance of the towline attachment point yp is treated as an extra

state to the system. The control system will be designed based on this augmented

system of equations. The control system will be designed based on two principles

of state-space theory; Linear Quadratic Regulator, and Sliding Mode Control.

B. LINEAR QUADRATIC REGULATOR

The linear quadratic regulator function arose from efforts to find an

optimum means of control [Ref. 6]. Normally, a gain matrix for a particular

control system is calculated to achieve specific closed-loop pole locations. With

14



the linear quadratic regulator, or LQR, a specific performance criterion J (or "cost

function") is defined, with the only stipulations on the poles being that they be

negative, or stable. This criterion J is defined as:

I= f [x' (t) Q(t) x(t) + u' (t) R(t) u(t) I dt

The matrices Q and R are weighting matrices. The matrix Q is a state

weighting matrix, and R is a control weighting matrix. The gains for a control

system can be calculated based on the defined matrices Q and R. For instance, if

the elements of the matrix Q are small relative to R, the system will tolerate large

errors in the final state with very little control effort. Conversely, if Q is large

relative to R, very small errors in the state X will result, but with considerable

control effort.

C. SLIDING MODE CONTROL

The second aspect of state-space theory to be used in controlling the towed

vessel is that of sliding mode control. Since the control law is based on a

linearized set of equations of motion, a lot of uncertainty in the response exists.

Also, some of the parameters may vary. A good example for the towed vessel

system is the towline tension T, which will certainly vary with time. A control

law needs to be developed that will take into account both the uncertainties in the

parameters, and any dynamics that have either not been modeled, or that have

been linearized. A sliding mode control law can ensure both stability and

robustness of the system, with the emphasis on robustness. The LQR gains will

15



ensure stability of the system. Sliding mode control is ideally suited to a system

where the response oscillates between set values, such as the motion of a towed

vessel; it uses a high speed "toggling" control law to drive the system onto a

desired "sliding plane."

Sliding mode control takes the standard state-space system

ic = [A~x , [blu (12)

and defines a sliding plane

O(x) =sX1 I + s 2x 2 + s 3x 3 + s4x 4  (13)

and the coefficient s, is arbitrary. Equation (13) can be written as

STX =

where

S T= [ss 21s31S4 4

Next, define the Lyapunov function

V(x) = [(x)]2

stability is guaranteed, provided x? (x) is a negative definite function. Another

way to express this is

V(x) = 0(x)(x)= -1120(x) (14)
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therefore,

S-l 2 sign 0 (15)

Since

0(x) =s T(X),(X) =ST(±) =ST (Ax +bu)

so, substituting for 0 in Equation (15):

s T (Ax + bu) = -12 sign (0)

and solving for u:

u =- -(sb )-l ST Ax _2 (S T b )-'sign () (16)

Equation (16) is a sliding mode control law for a generic system.

D. THE CONTROL LAW

All that remains is to define a control law for the augmented equations of

motion for the towed vessel. The control law is defined using sliding mode

control and linear quadratic regulator principles. Take the augmented system:

17



A11  A 12

YF 1 0 0 0 y0 1,

- T
X1  o P0 0 10 X1 0

0 000 100 (17)x 2 -- 0 0 0 0 1 x 2 +  0YP'

3 b3 a3 1 a 32 a33 a 34 0

x4. b4  a41  a42 a43  a4 .x4 0

A21  A22

and split the augmented matrix A into A,,, A12, A2,, and A22 as shown. Also split

the state vector into

Y, = yp = [ x x2,x3,x4 I

Rewrite equation (17) as

Y1 =Ally1 +A12Y2 +bl u

Y2 =A 21y +A2 2y2 +b2u

The original augmented state vector x now equals (yI, Y2).

Next, define the sliding plane for the towed vessel as

0(x) =0(y,y 2) = y' + s Ty 2 
= 0 (18)

and

0_72 sign (0) ,+ S T 2 (19)

18



but

Y, = Ay 1 +bu and Y2 =A21Y +A 22Y 2

so, substituting for y: and .92 is equation (19):

All, + blu +s T(A + A2 y2 ) - -12 sign (0)

solving for u:

-11
U - (All -Is TA 2 1 )y 1 +s TA y 2 ) - .1n2 sign (0) (20)

bbi

This is the system control law for the towed vessel.

The gains [s] for the sliding mode control law from minimization of the

linear quadratic regulator cost function J. Recall that

= fIxI [QI [x I+ [u] [ RI [u] }Idt (21)

in Equation (21) the state weighting matrix Q is as follows:

0 0001

0 0 00
0000

[o 0 00 j

where q22 represents an error in radians from the path of the towing vessel. We

are choosing to weigh the state variable x2 = V. The control weighting matrix R

will be defined by

19



R =(a)-2

where a, the maximum non-dimensional distance yp will be weighted. With Q

and R defined, the cost matrix function becomes:

=min f(q2x,2 + Ru 2 )dt (22)

or

minf (q 22V, + Ry2)dt (23)

The smaller the value for R is, the smaller the control effort required, but a larger

state error in q2 will be have to be accepted as a trade-off. Conversely, the larger

the value for R is the more control required, with very little state error in q2.

The resulting gains are then placed into the control law for the augmented

system of equations, Equation (20), and the response of the system is obtained.

20



IV. RESULTS

A. MATRIXX AND FORTRAN IMPLEMENTATION

MatrixX is an outstanding tool for understanding the response of a control

system. A Fortran program was written to use with MatrixX. Since the coefficients

of the [A] and [B] matrices of the state-space equation are constant with time,

they can be put directly into the MatrixX software, and the resulting Linear

Quadratic Regulator gains are easily calculated. Without the use of MatrixX,

solving the linear quadratic integral is a very difficult problem in numerical

analysis. The actual simulation of the system response was accomplished with a

Fortran program on the VAX computer. The LQR gains obtained from MatrixX

are put into a data file, along with the non-dimensional parameters of Tp, LL, XP,

T, and the initial conditions of Y, V, and the maximum distance Yp can travel

athwartships. The simulation then reads this data file, computes the sliding mode

control and plots the response of the parameters Y, Yp, V, and Ypc with respect to

time.

B. INITIAL CONDITIONS AND CONSTANT PARAMETERS

The results are presented graphically, and are in non-dimensional form, with

the exception of the yaw angle V, which is in degrees. The non-dimensionalization

is standard Principles of Naval Architecture: the relationships describing the

21



nondimensional parameters are included in the Appendix. Two vessels were

studied:

1. 528 foot mariner

2. 1066.3 foot tanker

A summary of the hull particulars and hydrodynamic derivatives for both these

vessels in also included in the Appendix. Four knots was used as the nominal

forward velocity. The mariner is stable at four knots; the tanker is unstable. The

towline tension for both vessels is taken from resistance curves at four knots, and

then non-dimensionalized; the value used is 0.001 XP, the longitudinal distance

from the towed vessel center of gravity to the towline attachment point, is

assumed to be constant. A value of 0.5 is used. The time required for YP to

"match" YPC as in Figure 2, TP is set as 0.5. The maximum non-dimensional

distance YP can travel from port to starboard extremes is taken to be 0.1; therefore

the maximum distance from an extreme to centerline is 0.05. The initial conditions

for each data run are Y=0.5, xV=0, and YP=0.05 as in Figure 3. Also, the weighting

matrices were set at q,=5' (or .087 radians) for Q, the state error weighting

matrix, and cc=0.015 for R, the control effect weighting for Yc. Four plots were

generated for each simulation. The y-distance from the path (Y), the towline

attachment point lateral offset (YP), the towline attachment point offset command

(Yr) and the yaw angle (AV) are all plotted vs nondimensional time. Variance of

parameters of interest are shown on subsequent runs.
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1. Figures 4 and 5: Standard Mariner and Tanker

Figure 4 shows the response of the mariner with the "standard"

parameters and initial conditions stated above; Figure 5 shows the "standard"

tanker. Overshoot in Y and xV exists for both cases, although it is higher in the

mariner. The Y1 , graph shows that significantly more effort is required to control

the tanker, and the oscillation in YP is much greater than for the mariner. This

makes sense, as the tanker is inherently more unstable. Both vessels converge to

a straightline path in approximately 60 non-dimensional seconds. As the tanker

is more unstable, it will be used to demonstrate all other variations in parameters.

Henceforth all references to "normal" or "standard" tanker response will be to the

response shown in Figure 5.

2. Figure 6: Tanker with Y, y Not Observable

Figure 6 shows the vessel response if the state variables Y and I? are not

observable and are not used in the control law. Both Y and i> converge but the

time required is significant; over 100 seconds. In this case there is no overshoot

in Y, but considerable overshoot in 4f. W, YP and YP all oscillate considerably; but

in the end, the system does converge.

3. Figures 7, 8: Observable Tanker, Variance of 0(x)

Recall from Equation (13) that the sliding plane 0(x) is in part arbitrarily

defined, as the gain 12 is chosen by the designer. For the standard runs, 12 was

set to be 1.0. Figure 7 shows the tanker response if 12 in 0(x) is set to 0.5, with all

24
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Figure 4. Mariner Response with Standard Parameters.
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0.8 Y vs ITime 1 Psi vs Time
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Figure 5. Tanker Response with Standard Parameters.
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05Y vs Time 1Psi vs Time
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Figure 6. Tanker with Y, Y Not Observable.
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state variables observable. The system still converges in adequate time; the

parameters Y, Y. and YP behave as in the standard tanker. There is

approximately twice as much overshoot in W, however. In Figure 8, 112 is set to

2.0; this brought the overshoot in w down to the level of the standard observable

tanker, without altering the favorable response of the other three parameters.

4. Figures 9, 10, 11: Non-Observable Tanker, Variance of O(x)

The state variables Y and Y' were assumed to be not observable in

Figures 9 and 10. In Figure 9, T12 was set to 0.5, with disastrous results. The towed

vessel becomes unstable. All four parameters diverge with time. In Figure 10,

however, T12 in 6(x) is set to 2.0, and the system response stabilizes. The overshoot

in W is approximately as the same as the standard tanker, but the overshoot in YP

and YPC is twice that of the normal tanker. The settling time in Y is double that

of the normal tanker, but the settling time in, YC and Yp is cut to forty seconds.

Obviously there is a value between 12 = 0.5 and 112 = 1.0 in W(x) where the

response turns unstable for the non-observable case. In subsequent simulations,

712 is set to be 2.0. Figure 11 summarizes the response of Y and Yp for the

observable and non-observable, with 112 = 2. The top two graphs are for the

observable case, and the bottom two describe the non-observable case.

5. Figure 13: Variance of the Sliding Plane Switching

Since sliding mode is a high-speed switching, or toggling method or

control, the speed at which the switching is to be accomplished must be defined.
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Figure 7. Observable Tanker, 11'=O.5.
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Figure 8. Observable Tankers, il2=2.O.
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Figure 9. Non-Observable Tanker, q 2 0.5.
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Figure 10. Non-Observable Tanker, T 2 =2.0.
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Figure 11. Observable, Non-Observable Comparison
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This switching speed can be defined in terms of an angle. Note in Figure 12 that

as the angle 0 approaches 90 degrees, the system is being asked to change

instantaneously. Another way of saying this is that the system is ordering the

towline attachment point to move instantaneously from port to starboard. 0=90

degrees is impossible; the designer has to allow the system time to react.

Figure 13 shows the observable and non-observable tanker response of

Y, YP for 0=30, 0=45, and 0=60. For the observable case, overshoot, the amount of

oscillation, and settling time increase as 0 increases. For the non-observable

tanker, the response destabilizes between 0=45 and 0=60. Clearly there is a limit

to the switching speed of the system. 0=45 was used for the standard tanker.

6. Figure 14: Variance of LQR Weighting

Figure 14 demonstrates the effect of varying the control effort in the

linear quadratic regulator. As a is increased from 0.005 to 0.035, more effort is

used to control the towed vessel motion. In Figure 14, Y and YP responses are

plotted for four different values of a. In all four graphs, the tanker is observable.

Note that as cc increases, the overshoot in YP decreases, and the settling time

remains about the same as for the standard tanker. This makes sense; more effort

is being expended to control YP through YP. The response of Y remains essentially

unchanged.
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Figure 14. Tanker Response for Y, Y,, as a Varies.
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7. Figure 15: Observable Tanker, Variance of TP

Figure 15 demonstrates the effect of varying the time allotted for YP to

match Yc for the standard tanker. The Tp used for the standard case was 0.5.

Varying Tp does not significantly affect the behavior unless the change is in order

of magnitude. This result has favorable implications; if changing Tp doesn't

radically affect the towed vessel response, a smaller motor can be used to drive

the device moving the towline attachment point, YP.

8. Figure 16: Variance of Towline Length

Figure 16 illustrates how changing the towline length will change the

response of the tanker, both in the observable and non-observable case. For this

simulation, the non-dimensional towline length, LL, was lengthened and

shortened by twenty percent. If the towline is shortened, the overshoot and

oscillation in Y and YP will increase for both observable and non-observable cases;

the reverse is true is the towline is lengthened. Settling time will remain the same.

9. Figure 17: Variance of Towline Tension

Figure 17 shows how changing the non-dimensional towline tension

will change tanker response. If the tension in decreased, the overshoot remains

about the same; oscillation and settling time in Y and YP increase for both the

observable and non-observable cases. The reverse is true as the tension is

increased. A 20 percent change in towline does not cause a radical change in

system response.
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10. Non-Linear (Large Angle) Motion

Recall from page 6 that the horizontal towline force associated in the

sway direction is

T sin (y +,)

and the moment due to the towline causing the vessel to yaw is:

-Txp (sin (y + 40) - Typcos (7 +'W)

Previously the assumption was made that the range of motion for y and V was

less than 30 degrees. This simulation lifts this restriction; the sine and cosine

terms from the towline tension term are left in when running the simulation.

Figure 18 plots the standard tanker response for both linear and non-linear

tensions. Note that the tanker response remains stable; the sliding mode control

law is robust enough to handle non-linearities in the towline tensions. The non-

line, r Fortran simulation program is included in the Appendix.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis explored the possibility of athwartships movement of the towline

attachment point as a means of improving the stability of towed vessels. Newell

demonstrated that use of a full order observer will work only when the towed

vessel trajectory is close to that of the towing vessel [Ref. 5]. Sliding mode control,

in conjunction with the Linear Quadratic Regulator cost function, provides a

much more robust method of controlling the towed vessel motion. The sliding

mode control law can ensure stability of the system, even if not all the state

variables can be observed. The only restrictions for the numerical applications

considered in this work are that a toggling speed such that € is less than an angle

between 45 and 60 degrees is used, and that the toggling gain if is greater than

a number between 0.5 and 1.0. The LQR function allows the designer to choose

where his emphasis is placed. By choosing whether to place the emphasis on the

control effort, the designer can minimize the size of the motor required to drive

the mechanical apparatus used to move the towline attachment point. If the

designer wants to minimize steady state error, he can change the LQR function

to reflect that emphasis. The LQR function can also be used to minimize specific

state variables, such as in the case studied, where V was chosen to be minimized.

It should be emphasized that a "worst-case" scenario was used to demonstrate the
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robustness of the system; a large, unwieldy tanker was used, and two of the four

state variables were declared "not observable." Even in the worst case the sliding

mode control law performed adequately. Towline tension and length were

increased and decreased by 20 percent, and the system remained stable. The small

angle motion assumption was dropped, and yet the system continued to perform

satisfactorily.

B. RECOMMENDATIONS

The sliding mode control law should be robust enough to cover most of the

unmodeled dynamics and non-linearities, but two of the assumptions made at the

beginning of the thesis must be investigated further; the massless, inextensible

towline, and the no wind, wave, or current (disturbances) assumptions. In reality

the towline tension does not remain constant; consequently, the surge velocity u

of the towed vessel will also vary. A method to take these aspects of motion into

account needs to be looked at; integral control is one possibility. Another is to

determine a wave and towline function, and add the two functions to the right

side of the sway and yaw equations of motion.

This thesis has shown that it is possible to stabilize and control the motion

of a towed vessel with a sliding mode control law that uses linear quadratic

regulator gains. Further analysis needs to be done on the effects of disturbances

and a time-variant towline tension on the system.
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APPENDIX

TABLE I. TOWED VESSEL DATA

Vessel

Property Barge Tanker Mariner

LBP, ft 191.56 1066.3 528

-0.00136 -0.0009 -0.0004444xu

M/ 0.170 0.0181 0.00888

y -0.01383 -0.0171 -0.00912

y", -0.0153 -0.0261 -0.01434

YWI 0 0 0

y4 0.00238 0.00365 0.00456

0 0 0

N!, -0.007285 -0.0105 -0.0046

12 -NWI 0.00188 0.00222 0.00115

Nw -0.00128 -0.0048 -0.00296
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TABLE 2. NONDIMENSIONAL TERMS

Tn r/r. Y/ (m, u- /L)

/ /v

u2 -i L ~ N YN= (mru)

t /(u.2-L) (time) N = N, I (n.L)

I> 12 /m, L) N'= Nv'=N 4,(m. u, L

tl =V =IV u2 /T'=TI( Mru2L) (Tension)

Y9Yg/ L xr xI, IL

X, X../ mr
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MATRIX1 LQR PROGRAM

Xudot=-0.0009;
M=0.0181;
Yvdot= -0.01 71;
Yv=-0.0261;
Yrdot=0.0;
Yr=0.00365;
YdeI=0.0278;
Nvdot=0.O;
Nv=-0.0105;
Nrdotlz=-.00222
Nr=-0.0048
NdeJ=-O.0139
inquire LL
inquire Xp
inquire T
U=1.0;
L=1.0;
D=NrdotI?(Yvdot-M)-Nvdot*Yrdot;
a13=1.0;
a24=1.0;
a31 =0 /D)*(T/LL)*(NrdotIz-Xp*Yrdot);
a32=01 /D)*((Yv*U+T*(1 +Xp/LL))*Nrdotlz-Yrdot*(Nv*U+P'Xp*(1 +Xp/ LL)));
a33=01 /D)*(Nv*Yrdot-Yv*Nrdotlz);
a34=01 /D)*((Yvdot*U-Yr)*Nrdotiz-Yrdot*(Nvdot*U-Nr));
a41 =01 /D)*(T/LL)*(Xp*(Yvdot-M)-Nvdot);
a42=01 /D)*((Yvdot-M)*(Nv*U+T*~Xp*(1 +Xp/LL))-Nvdot*(Yv*U+Th1 +Xp/LL)));
a43=01 /D)*(Nvdot*Yv-Nv*(Yvdot-M));
a44=01 /D)*(Nvdot*Yr-Nr*Yvdot+(Nr-Nvdot*U)*M);
b3=0 /D)*T*(Nrdotlz/LL-Yrdot*( +Xp/LL));
b4=01 /D)*'((Yvdot-M)*(l.IXp/LL)-Nvdot/LL);
A=I0,O,al 3,0,0,0,O,a24;a3l,a32,a33,a34;a4l,a42,a43,a441;
B=[00;b3;b41;
C=I0,0,1,0J;
D=[01;
Q=[0 0 0 0;0 131.3316 0 0,0 0 0 0;0 0 0 01;
inquire alpha
R=[(1 /alpha)**21;
<EIG,K>=REGULATOR(A,B,Q,R);
INQUIRE TP
Al =1-1 /TP,0,0,0,0;0,0,0,1,0AO,,0,0,1;B3,A31,A32,A33,A34;B4,A41,A42,A43,A41;
B1=[1/Th;00,, 0;
S=[1,KI;
GI -NV(S*BI )**Al;
G2=-INV(S*Bl);
ETA2=G2
GAIN=G1
SIGMA=S
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LINEAR SIMULATION PROGRAM

C

REAL KYP,K1 ,K2-,K3,K4,L,LL,Nvdot,M,Nv,Nr,Nrdot
Xudot=-O.0009
M=0.0181
Yvdot=-0.0171
Yv=-O.0261
Yrdot=0.0
Yr=0.00365
Ydel=0.0278
Nvdot=0.0
Nv=-0.0105
Nrdot=-0.00222
Nr=-O.0048
Ndel=-O.0139
U=I.0
L=1.0

OPEN (10,FILE='LINEAR.DAT',STATUS='OLD')
OPEN (11,FILE='Y.DAT",STATUS='NEW')
OPEN (12,F'1LE='PSI.DAT',STATLJS='NEW')
OPEN (13,FILE='YP.DAT',STATUS--'NEW')
OPEN (14,FILE='YPC.DAT',STATUS='NEW')

C
READ (10,-) TSIM,DELTAT,IPRNT
READ (I0,*) KYP,K1,K2,K3,K4
READ (10,*) SYPS1,S2,S3,S4
READ (10,*) GBAR
READ (10,*) TP,LL,XP,T
READ (10,*) ETA2,PHI
READ (I0,*) Y,PSI,SAT

ISIM=TSlM/DELTAT
PI=4.0*ATAN(1 .0)
PHI=PHI*PI /180.0
PSI=PSI*PI /180.0
SATP= SAT
SATM=-SAT
XI =Y
X2=PSI
X3=0.0
X4=0.0
YP=0.o
YPC=0.0

C
D=Nrdot*(Yvdot-M)-Nvdot*Yrdot
a13=1 .0
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a24=1 .0
a3l =01 /D)*(T/LL)*(Nrdot-Xp*Yrdot)
a32=(l /D)*((Yv*U+T*h1 +Xp/LL))*Nrdot-Yrdot*(Nv*U+T*Xp*(i +Xp/LL)))
a33=01 /D)*(Nv*Yrdot-Yv*Nrdot)
a34=0I /D)*((YvdotaIU-Yr)*Nrdot-Yrdot*(Nvdot*U-Nr))
a4l =(I /D)*(T/LL)*(Xp*(Yvdot-M)-Nvdot)
a42=0I /D)*((Yvdot-M)*(Nv*U+T*Xp*(l+Xp/LL))
& -Nvdot(Yv*U+T*(1+Xp/LL)))
a43=01 /D)*(Nvdot*IYv-Nv*(Yvdot-M))
a44=0 /D)*(Nvdot*Yr-Nr*Yvdot+(Nr-Nvdot*U)*M)
b3=(0 /D)*Th*(Nrdot/LL-Yrdot*O +Xp/LL))
b4=01 /D)*Th((Yvdot-M )*(l+Xp/ LL)-Nvdot/LL)

C
C SIMULATION BEGINS
C

DO 1 I=I,ISIM
YPDOT =-YP/TP+YPC/TP
XlDOT = X3
X2D0T = X4

M3OT = B3*YP + A31*XI + A32*X2 + A33*X3 + A34*X4
X4DOT = B4*YP + A41*XI + A42*X2 + A43*X3 + A44*X4

C
YP =YP + YPDOT*DELTAT
Xl = Xl + XlDOT*DELTAT
X2 = X2 + X2DOT'*DELTAT
X3 = X3 + X3DOT*DELTAT
X4 = X4 + X400T*DELTAT

C
C CONTROL LAW
C

SIGMA = SYP*YP + Sl*)(l + S2*X2 + S3*X3 +S4*X4
SATSGN= SIGMA/TAN(PHI)
IF (SATSGN.GE.(+1.0)) SATSGN=+l.0
IF (SATSGN.LE.(-1.0)) SATSGN=-I.0
UHAT =KYP*YP + KI*Xl + K2*X2 + K3*X3 + K4*X4
UBAR =ETA2*GBAR*SATSGN

YPC = UHAT+UBAR
IF (YPC.GE.SATP) YPC=SATP
IF (YPC.LE.SATM) YPC=SATM

C
Y =Xl
PSI=X2

C
C PRINT RESULTS
C

J=J+l
IF (J.NE.IPRNT) GO TO 1
TIME=I*DELTAT
WRITE (*,*) TIME,Y
WRITE (II,*) TIME,Y
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WRITE (12,*) TIME,PSI*180.O/PI
WRITE (13,*) TIME,YP
WRITE (14,*) TIME,YPC
J=0

1 CONTINUE
STOP
END
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NON-LINEAR SIMULATION PROGRAM

C NONLINEAR SIMULATION - TANKER
C SURGE NOT INCLUDED
C

REAL KYP,K1 ,K2,K3,K4,L,LL,NVDOTNV,LZ,NRDOTNR,NVRR
C

XUDOT=-0.0009
M = 0.0181
YVDOT=-0.O1 71
YV =-0.0261
YRDOT= 0.0
YR = 0.00365
NVDOT= 0.0
NV =-0.0105
12 = 0.0
NRDOT=-0.0022
NR =-0.0048
YVRR =-0.045
NVRR =0.0061

UTOW =10.0

L =1066.3
RHO = 1.9905
SB =680625.0

P =9.78
Q =1.93
SB =SB/(0.5*RH~O*L*L*UTOW*UTOW)

C
OPEN (1 0,FILE='LINAR.DAT',STATUS='OLD')
OPEN (1 1,FILE='Y.RES',STATUS='NEW')
OPEN (12,FILE='PSI.RES',STATUS--'NEW')
OPEN (13,FILE='YP.RES',STATUS='NEW')
OPEN (14,FILE='YPC.RES',STATUS='NEW')
OPEN (15,FILE='NONLINAR1.RES',STATUS='NEW')

C
READ (10,*) TSIM,DELTATIPRNT
READ (10,*) KYP,KI,K2,K3,K4
READ (10,*) SYPS,1,S2,S3,54
READ (10,1) GBAR
READ (10,*) TP,LL,XP,T
READ (10,-) ETA2,PHI
READ (10,1) Y,PSISAT

C
ISIM = TSIM/DELTAT
PI 4.0'*ATAN(l.0)
PHI =PHI*PI/180.0

PSI =PSI*PI/180.0

SATP = SAT
SATM =-SAT
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X =LL-XP
U = 1.0
V = 0.0
R = 0.0
YP =0.0
YPC =0.0

C
DEN=(M-YVDOT)*(lZ-NRDOT)-YRDOT*NVDOT

C
C SIMULATION BEGINS
C

DO I I=1,ISIM
C

F3=*V+0.5*N4RR*V*R*R+NRJ*R
C

SING=(Y+XP*SIN(PSI)+YP*COS(PSI))/LL
GAMMA=ASIN(SING)

C
YPDOT =-YP/TP+YPC /TP
VDOT =(F2-T'*SIN(GAMMA+PSI))/(M-YVDOT)
RDOT =(37X*[(AM+S)TYPCSGMAPI)(ZNDT
YDOT =U*SIN(PSI)+V*COS(PSI)
PSIDOT=R

C
YP =YP + YI'DOT *DELTAT
U =U + UDOT *DELTAT
V =V + VDOT *DELTAT
R =R + RDOT *DELTAT
X =X + XDOT *DELTAT
Y =Y + YDOT *DELTAT
PSI =PSI + PSIDOT*DELTAT

C
C CONTROL LAW
C

SIGMA =SYP"YP + Sl*Y + S2*PSI + S3*YDOT + S4*PSIDOT
SATSGN= SIGMA/TAN(PHI)
IF (SATSGN.GE.(+1.0)) SATSGN=+1.0
IF (SATSGN.LE.(-1.0)) SATSGN=-1.0
UH4AT KYP*YP + Kl*Y + K2*PSI + K3*YDOT + K4*PSIDCYT
UBAR =ETA2*GBAR*SATSGN

YPC = UHAT+UBAR
IF (YPC.GE.SATP) YPC=SATP
IF (YPC.LE.SATM) YPC=SATM

C
C PRINT RESULTS
C

J=J+1
IF (J.NE.IPRNT) GO TO 1
TIME=I*DELTAT
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WRITE (*,*) TIME,Y
WRITE (11,*) TIMEY
WRITE (12,*) TIME,PSI'180.O/PI
WRITE (13,') TIME,YP
WRITE (14,') TIMEYPC
WRITE (15,') TIME,YPSI'1 80.O/PI,YP,YPC
v,=0

I CONTIN-UE
STOP
END
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